
DNS/DNSSEC Deployment  
Workshop 
As part of bdNOG 2 Conference and Workshop 

11 November 2014 



Presenter 
Sheryl Hermoso (Shane) 

Training Officer, APNIC 

Sheryl has had various roles as a Network and Systems 
Administrator prior to joining APNIC. Starting her career as a 
Technical Support Assistant while studying at the University of the 
Philippines. Sheryl later finished her degree in Computer 
Engineering and continued to work in the same university as a 
Network Engineer, where she managed the DILNET network 
backbone and wireless infrastructure. 

Areas of interests:  

Wireless/wifi, DNS/DNSSEC, IPv6, and security. 

 
Contact:  
Email: sheryl@apnic.net 

 



Agenda 

•  DNS Overview 

•  BIND DNS Configuration 

•  Recursive and Forward DNS 

•  Reverse DNS 

•  Troubleshooting 

•  DNS Security Overview 

•  Transaction Signature (TSIG) 

•  DNS Security Extensions (DNSSec) 

•  DNSSec Key Management and Automation 



DNS Overview 



Domain Name System 

•  A lookup mechanism for translating objects into other 
objects 
–  Mapping names to numbers and vice versa 

•  A globally distributed, loosely coherent, scalable, reliable, 
dynamic database 

•  Comprised of three components 
–  A “name space” 
–  Servers making that name space available 
–  Resolvers (clients) which query the servers about the name space 

•  A critical piece of the Internet infrastructure 



IP Addresses vs Domain Names 

The Internet 

2001:0C00:8888:: My Computer www.apnic.net 2001:0400:: 

www.apnic.net 202.112.0.46 
2001:0400:: 

DNS 



This feature still exists: 
[Unix] /etc/hosts  

[Windows] c:\windows\hosts 

Old Solution: hosts.txt 

•  A centrally-maintained file, distributed to all hosts on the 
Internet 

•  Issues with having just one file 
–  Becomes huge after some time 
–  Needs frequent copying to ALL hosts 
–  Consistency 
–  Always out-of-date 
–  Name uniqueness 
–  Single point of administration 

// hosts.txt 
SERVER1  128.4.13.9 
WEBMAIL  4.98.133.7 
FTPHOST  200.10.194.33 



DNS Features 

•  Global distribution 
–  Shares the load and administration 

•  Loose Coherency 
–  Geographically distributed, but still coherent 

•  Scalability  
–  can add DNS servers without affecting the entire DNS 

•  Reliability 

•  Dynamicity 
–  Modify and update data dynamically 



 DNS Features 

•  DNS is a client-server application 

•  Requests and responses are normally sent in UDP packets, 
port 53 

•  Occasionally uses TCP, port 53 
–  for very large requests, e.g. zone transfer from master to slave 



Root . 

.org .net .com .au 

.edu.au 

example.edu.au 

.gov 

.jp 

.tv 

.in 
x.y.z.a  

www.example.edu.au 

a.b.c.d 

e.f.g.h  

  i.j.k.l 

m.n.o.p w.x.y.z. 

p.q.r.s 

“Ask a.b.c.d” 
“Ask e.f.g.h” 

“Ask i.j.k.l” 

“Go to m.n.o.p” 

local 
dns 

www.example.edu.au? “go to 
m.n.o.p” 

www.example.edu.au? 

www.example.edu.au? 

www.example.edu.au? 

www.example.edu.au? 

Querying the DNS – It’s all about IP! 



The DNS Tree Hierarchy 
Root . 

net jp org com arpa au 

whois 

edu 
bnu 

iana 

www www 

… 

www wasabi 

ws1 ws2 

edu com net 
abc 

www 

apnic 
gu 

www 

FQDN = Fully Qualified Domain Name 



Domains 

•  Domains are “namespaces” 

•  Everything below .com is in the com domain 

•  Everything below apnic.net is in the apnic.net domain and 
in the net domain 



AU Domain NET Domain 

Domains 

www.def.edu.au? 

APNIC.NET Domain 

Root . 

net org com arpa au 

whois 

iana 

www www wasabi 

ws1 ws2 

edu com net 
abc 

www 

apnic 
def 

www 



Delegation 

•  Administrators can create subdomains to group hosts 
–  According to geography, organizational affiliation or any other 

criterion 

•  An administrator of a domain can delegate responsibility for 
managing a subdomain to someone else 
–  But this isn’t required 

•  The parent domain retains links to the delegated 
subdomain 
–  The parent domain “remembers” who it delegated the subdomain to 



Zones and Delegations 

•  Zones are “administrative spaces” 

•  Zone administrators are responsible for portion of a 
domain’s name space 

•  Authority is delegated from parent to child 



NET Domain 

Zones 

APNIC.NET Domain 

NET Zone 

TRAINING.APNIC.NET Zone 
APNIC.NET Zone doesn’t  
include TRAINING.APNIC.NET 
since it has been “delegated” 

APNIC.NET Zone 

Root . 

net org com arpa 

whois 

iana 

www www training 

ns1 ns2 

apnic 



Name Servers 

•  Name servers answer ‘DNS’ questions  

•  Several types of name servers 
–   Authoritative servers 

•  master (primary) 
•  slave (secondary) 

–  Caching or recursive servers 
•  also caching forwarders 

•  Mixture of functions 

Primary 

Secondary 



Root Servers 

•  The top of the DNS hierarchy 

•  There are 13 root name servers operated around the world, 
with names from [a-m].root-servers.net 

•  There are more than 13 physical root name servers 
–  Each rootserver has an instance deployed via anycast 

•  Root hints file come in many names (db.cache, named.root, 
named.cache, named.ca) 
–  Get it from ftp.rs.internic.net 

•  See root-servers.org for more detail 



Root Servers 



Resolver 

•  Or “stub” resolver 

•  A piece of software (usually in the operating system) which 
formats the DNS request into UDP packets 

•  A stub resolver is a minimal resolver that forwards all 
requests to a local recursive nameserver 
–  How to find a local nameserver? The IP address should be explicitly 

configured in the resolver. 

•  Every host needs a resolver 
–  In Linux, it uses /etc/resolv.conf 

•  Note that it is always a good idea to configure more than 
one nameserver 



Recursive Nameserver 

•  The job of the recursive nameserver is to locate the 
authoritative nameserver and get back the answer 

•  This process is iterative – starts at the root 

•  Recursive servers are also usually caching servers 

•  Prefer a nearby cache 
–  Minimizes latency issues 
–  Also reduces traffic on your external links 

•  Must have permission to use it 
–  Your ISP’s nameserver or your own 
 

Recursive/Caching  
Nameserver 



Authoritative Nameserver 

•  A nameserver that is authorised to provide an answer for a 
particular domain. 
–  Can be more than one auth nameserver 

•  Two types based on management method: 
–  Primary (Master) and Secondary (Slave) 

•  Only one primary nameserver 
–  All changes to the zone are done in the primary 

•  Secondary nameserver/s will retrieve a copy of the zonefile 
from the primary server 
–  Slaves poll the master periodically 

•  Primary server can “notify” the slaves  
Primary 

Secondary 

Secondary 



Resource Records 

•  Entries in the DNS zone file 

•  Components: 

Resource Record Function 
Label Name substitution for FQDN 
TTL Timing parameter, an expiration limit 
Class IN for Internet, CH for Chaos 
Type RR Type (A, AAAA, MX, PTR) for 

different purposes 
RDATA Anything after the Type identifier; 

Additional data 



Common Resource Record Types 
RR Type Name Functions 
A Address record Maps domain name to IP address  

www.apnic.net. IN A 203.176.189.99 

AAAA IPv6 address record Maps domain name to an IPv6 address 
www.apnic.net. IN AAAA 2001:db8::1 

NS Name server record Used for delegating zone to a nameserver 
apnic.net. IN NS ns1.apnic.net. 

PTR Pointer record Maps an IP address to a domain name 
99.189.176.203.in-addr.arpa. IN PTR 
www.apnic.net. 

CNAME Canonical name Maps an alias to a hostname 
web IN CNAME www.apnic.net. 

MX Mail Exchanger Defines where to deliver mail for user @ 
domain 
apnic.net. IN MX 10 mail01.apnic.net. 
           IN MX 20 mail02.apnic.net. 



Example: RRs in a zone file 
apnic.net. 7200 IN      SOA     ns.apnic.net. admin.apnic.net. ( 
                        2013071001  ; Serial  
                        12h    ; Refresh 12 hours 
                        4h    ; Retry 4 hours 
                        4d   ; Expire 4 days 
                        2h   ; Negative cache 2 hours ) 
 
apnic.net.   7200   IN     NS       ns.apnic.net. 
apnic.net.   7200   IN     NS       ns.ripe.net. 
whois.apnic.net.   3600   IN  A        193.0.1.162 
www.apnic.net   3600  IN  A  192.0.3.25 
 
 Label TTL Class Type Rdata



Places where DNS data lives 

Changes do not propagate instantly 

 

Registry DB 

Master 

Slave server 

Slave 

Cache server 

Not going to net if TTL>0 

Might take up to ‘refresh’  
to get data from master 

Upload of zone  
data is local 
policy 



Delegating a Zone 

•  Delegation is passing of authority for a subdomain to 
another party 

•  Delegation is done by adding NS records 
–  Ex: if APNIC.NET wants to delegate TRAINING.APNIC.NET 

training.apnic.net.  NS ns1.training.apnic.net. 

training.apnic.net.  NS ns2.training.apnic.net. 
 

•  Now how can we go to ns1 and ns2? 
–  We must add a Glue Record 



Only this record needs glue

Glue Record 

•  Glue is a ‘non-authoritative’ data 

•  Don’t include glue for servers that are not in the sub zones 

training.apnic.net.  NS  ns1.training.apnic.net. 
training.apnic.net.  NS  ns2.training.apnic.net. 
 
training.apnic.net.  NS  ns2.example.net. 
training.apnic.net.  NS  ns1.example.net. 
 
ns1.training.apnic.net. A   10.0.0.1 
Ns2.training.apnic.net. A   10.0.0.2 
 
 

Glue 
Record



Delegating training.apnic.net. from 
apnic.net. 

ns.training.apnic.net 
 
1.  Setup minimum two servers 
2.  Create zone file with NS records 
3.  Add all training.apnic.net data 

ns.apnic.net 
 
1.  Add NS records and glue 
2.  Make sure there is no other data 

from the training.apnic.net. zone in 
the zone file 



Remember ... 

•  Multiple authoritative servers to distribute load and risk:  
–  Put your name servers apart from each other 

•  Caches to reduce load to authoritative servers and reduce 
response times 

•  SOA timers and TTL need to be tuned to needs of the zone 
Stable data: higher numbers 



Performance of DNS 

•  Server hardware requirements 

•  OS and the DNS server running 

•  How many DNS servers? 

•  How many zones are expected to load? 

•  How large are the zones? 

•  Zone transfers 

•  Where are the DNS servers located? 

•  Bandwidth  



Performance of DNS 

•  Are these servers Multihomed? 

•  How many interfaces are to be enabled for listening?  

•  How many queries are expected to receive? 

•  Recursion 

•  Dynamic updates? 

•  DNS notifications 



Questions 



DNS BIND 
  



DNS Software 

•  DNS BIND – authoritative + recursive server 

•  Unbound - caching DNS resolver 

•  NSD – authoritative only nameserver 

•  Microsoft DNS – provided with the Windows Server 

•  Knot DNS – authoritative only nameserver 

•  PowerDNS – data storage backends 



BIND 

•  Berkeley Internet Name Domain 

•  The most widely-used open source DNS software on the 
Internet 

•  Maintained by the Internet Systems Consortium (ISC) 

•  Bind 10 is in development  
–  New architecture 
–  Bind 10.1.1 released on June 06 2013 



Where to Get BIND 

•  From the ISC website 
–  http://www.isc.org 
–  ftp://ftp.isc.org/isc/bind9 

•  Other packages that are necessary 
–  OpenSSL (for DNSSEC) 



Unpacking BIND9 

•  When installing BIND from source, decompress the gzip file 
 tar xvfz bind-9.9.3-P1.tar.gz 
 cd bind-9.9.3-P1 

•  What's in there? 
–  A lot of stuff (dig, libraries etc) 
–  configure (script) 
–  Administrator's Reference Manual 

•  doc/arm/Bv9ARM.html 



Building BIND9 

•  must be in the BIND 9.9.2 directory  
•  Determine the appropriate includes and compiler settings 

 ./configure --with-openssl 
•  Build and compile 

 make 
•  Install the BIND package 

 make install 

•  Verify the installation 

 which named 
 named -v 



Location of Executables 

•  Executables 
–  /usr/local/sbin 

•  named 
•  dnssec-keygen, dnssec-makekeyset, dnssec-signkey, dnssec-signzone 
•  lwresd, named-checkconf, named-checkzone 
•  rndc, rndc-confgen 

–  /usr/local/bin 
•  dig 
•  host, isc-config.sh, nslookup 
•  nsupdate 

•  And libraries included 

•  Documentation in <src>/doc/arm/Bv9ARM.html 



Named Configuration 

•  The BIND configuration file is called “named.conf”  
–  Default location is in /etc/named.conf 

•  Defines the zones and corresponding zonefile 

•  Turn on logging for troubleshooting 
–  Several categories 
–  Categories are processed in one or more channels 
–  Channels specify where the output goes 



Named Configuration 

•  BIND Configuration file  
•  Option statement contains all global configuration options to 

be used as defaults by named. 
options { 

 directory “/var/named/recursive”; }; 

•  Zone statement defines the zones 
–  For a simple caching server, the zone statement defines	  

•  Root	  Hints	  
•  Forward	  dns	  for	  localhost	  
•  Reverse	  dns	  for	  loopback	  zones	  

zone “.” { 
 type hint; 
 file “root.hints”; }; 

 
	  



Root Servers 

•  The top of the DNS hierarchy 

•  There are 13 root name servers operated around the world, 
with names from [a-m].root-servers.net 

•  There are more than 13 physical root name servers 
–  Each rootserver has an instance deployed via anycast 

•  Root hints file come in many names (db.cache, named.root, 
named.cache, named.ca) 
–  Get it from ftp.rs.internic.net 

•  See root-servers.org for more detail 



Root Servers 



What it looks like 
 

.                        3600000  IN  NS    A.ROOT-SERVERS.NET. 

A.ROOT-SERVERS.NET.      3600000      A     198.41.0.4 

A.ROOT-SERVERS.NET.      3600000      AAAA  2001:503:BA3E::2:30 

; operated by WIDE 

.                        3600000      NS    M.ROOT-SERVERS.NET. 

M.ROOT-SERVERS.NET.      3600000      A     202.12.27.33 

M.ROOT-SERVERS.NET.      3600000      AAAA  2001:dc3::35 

ftp://ftp.rs.internic.net/domain/ 



Named Configuration (Recursive 
Server) 
•  The recursive server needs to know how to reach the top of 

the DNS hierarchy 

•  It should also stop some queries such as those for localhost 
(127.0.0.1) 

•  The following files are required to run a recursive/caching 
server: 
–  named.conf 
–  root.hints 
–  localhost zone (db.localhost) 
–  0.0.127.in-addr.arpa zone (db.127.0.0.1) 
–  ::1 IPv6 reverse zone (db.ip6) 



Zones Defined in a Recursive Server 
•  Loopback name in operating systems 

–  Queries for this shouldn't use recursion 
–  So we will configure a file to define the localhost zone 
–  Localhost will map to 127.0.0.1 and ::1 
–  db.localhost 

zone “localhost” { 
 type master; 
 file db.localhost; }; 

•  Reverse zone for the loopback 
–  We need a reverse zone that maps 127.0.0.1 (and ::1) to localhost 
–  db.127.0.0.1 

zone “0.0.127.in-addr.arpa” { 
 type master; 
 file db.127.0.0.1; 
 }; 



Example named.conf 

zone "localhost." { 

        type master; 

        file "localhost";      

}; 

zone "0.0.127.in-
addr.arpa." { 

        type master; 

        file "0.0.127.in-
addr.arpa";      

}; 

options { 

     directory "/var/named/
recursive"; 

     recursion yes; 

}; 

zone "." { 

        type hint; 

        file "named.root"; 

}; 



Zone Files 

•  Contain the resource records defined in a particular zone 
•  A zone file begins with a Start of Authority Record (SOA)  

@     SOA   localhost.  root.localhost.   ( 
                        20121115 ;serial no. 
                        30m    ;refresh 
                        15m    ;retry 
                        1d     ;expire 
                        30m    ;negative cache ttl ) 

•  Common Zone File directives 
–  $ORIGIN 
–  $INCLUDE 
–  $TTL  
–  @ represents the current origin 



Start of Authority (SOA) record 

•  Serial Number – must be updated if any changes are made in the zone file  

•  Refresh – how often a secondary will poll the primary server to see if the serial number for the 
zone has increased 

•  Retry - If a secondary was unable to contact the primary at the last refresh, wait the retry value 
before trying again 

•  Expire - How long a secondary will still treat its copy of the zone data as valid if it can't contact 
the primary. 

•  Minimum TTL - The default TTL (time-to-live) for resource records    

   Domain_name. CLASS  SOA  hostname.domain.name. mailbox.domain.name (  
    Serial Number  
    Refresh 

     Retry 
     Expire  

    Minimum TTL ) 



TTL Time Values  

•  The right value depends on your domain 

•  Recommended time values for TLD (based on RFC 1912) 
 Refresh  86400 (24h) 
 Retry   7200 (2h) 
 Expire   2592000 (30d) 
 Min TTL  345600 (4d) 

•  For other servers – optimize the values based on 
–  Frequency of changes 
–  Required speed of propagation 
–  Reachability of the primary server 
–  (and many others) 



localhost file 

$TTL 86400 

@        IN     SOA localhost. root.localhost. ( 

                      20121115   ; serial 

                      1800   ; refresh 

                      900    ; retry 

                     69120   ; expire 

                      1080   ; negative ttl 

                         ) 

                NS  localhost. 

                A  127.0.0.1 



0.0.127.in-addr.arpa file 

$TTL 86400 
@        IN     SOA localhost. root.localhost. ( 
                     20121115  ; serial 
                     1800  ;refresh 
                     900   ;retry 
                     69120  ;expire 
                     1080  ;negative ttl 
                     ) 
 
                NS   localhost. 

  1     PTR  localhost. 
 



Assembling the files 

•  Create a directory in /var/named/ 

 ls  
   0.0.127.in-addr.arpa   localhost  root.hints 

•  The directory name and file names will be defined in 
named.conf 

•  Now create a named.conf file in the same directory 



Running the server 

•  From the directory 
  
 named -g -c named.conf 

 
 where: 
  -c  path to the configuration file 
  -g  run in the foreground 



Testing the server 
% dig @127.0.0.1 www.google.com 
 
; <<>> DiG 9.8.3-P1 <<>> www.google.com 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 213 
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 0 
 
;; QUESTION SECTION: 
;www.google.com.   IN  A 
 
;; ANSWER SECTION: 
www.google.com.   156  IN  A  74.125.237.115 
www.google.com.   156  IN  A  74.125.237.113 
www.google.com.   156  IN  A  74.125.237.116 
www.google.com.   156  IN  A  74.125.237.114 
www.google.com.   156  IN  A  74.125.237.112 
 
;; Query time: 27 msec 
;; SERVER: 127.0.0.1#53(203.119.98.119) 
;; WHEN: Thu Jul 11 13:46:29 2013 
;; MSG SIZE  rcvd: 112 



Questions 



Reverse DNS  
  



What is ‘Reverse DNS’? 

•  ‘Forward DNS’ maps names to numbers 
–  svc00.apnic.net è202.12.28.131 

•  ‘Reverse DNS’ maps numbers to names 
–  202.12.28.131 è svc00.apnic.net 

Person (Host) Address (IPv4/IPv6) 



Reverse DNS - why bother? 

•  Service denial 
–  only allow access when fully reverse delegated  
–  Example: anonymous ftp 

•  Diagnostics 
–  Assisting in trace routes etc 

•  SPAM identifications 
–  Failed reverse lookup results in a spam penalty score 

•  Registration responsibilities 
–  APNIC members must make sure that all their address space are 

properly reverse delegated 



Principles – DNS Tree 
Mapping numbers to 

names - ‘reverse DNS’ 

Root . 

net org com arpa 

whois 

iana 

www www training 

ws1 ws2 

apnic in-addr 

202 203 204 210 

64 

22 22. 64. 202. in-addr.arpa. 



Creating Reverse Zones 

•  Same as creating a forward zone file 
–  SOA and initial NS records are the same as normal zone 

•  Main difference 
–  need to create additional PTR records  

•  Can use BIND or other DNS software to create and 
manage reverse zones 
–  Details can be different 

•  In addition to the forward zone files, you need the reverse 
zone files 
–  Ex: for a reverse zone on a 203.176.189.0/24 block, create a zone 

file and name it as “db.203.176.189” (make it descriptive) 



Pointer (PTR) Records 

•  Create pointer (PTR) records for each IP address  

 

 

 

              
 or 

131.28.12.202.in-addr.arpa. IN PTR svc00.apnic.net.  

131     IN    PTR     svc00.apnic.net.  



Reverse Zone Example 
  

Note trailing dots

 $ORIGIN 1.168.192.in-addr.arpa. 
 @  3600  IN SOA test.company.org. ( 
    sys\.admin.company.org.  
    2002021301  ; serial 
    1h   ; refresh 
    30M   ; retry 
    1W   ; expiry 
    3600 )  ; neg. answ. ttl 

 
  NS  ns.company.org. 
  NS  ns2.company.org. 

 
 1  PTR  gw.company.org. 
   router.company.org. 

 2  PTR  ns.company.org. 
  



Reverse Delegation Requirements 

•  /24 Delegations 
–  Address blocks should be assigned/allocated 
–  At least two name servers 

•  /16 Delegations 
–  Same as /24 delegations 
–  APNIC delegates entire zone to member 

•  < /24 Delegations 
–  Read “Classless IN-ADDR.ARPA delegation” (RFC 2317) 

RFC 
2317 



APNIC & ISPs responsibilities 

•  APNIC 
–  Manage reverse delegations of address block distributed by APNIC  
–  Process organisations requests for reverse delegations of network 

allocations 

•  Organisations 
–  Be familiar with APNIC procedures 
–  Ensure that addresses are reverse-mapped 
–  Maintain nameservers for allocations 
–  Minimise pollution of DNS 



Reverse Delegation Procedures 

•  Standard APNIC database object  
–  can be updated through MyAPNIC 

•  Nameserver/domain set up verified before being submitted 
to the database. 

•  Protection by maintainer object 
–  (current auths:  CRYPT-PW, PGP). 

•  Any queries 
–  Contact helpdesk@apnic.net 



Reverse Delegation Procedures 



Whois domain object 

domain:    28.12.202.in-addr.arpa 
Descr:     in-addr.arpa zone for 28.12.202.in-addr.arpa 
admin-c:   NO4-AP 
tech-c:    AIC1-AP 
zone-c:    NO4-AP 
nserver:   cumin.apnic.net 
nserver:   tinnie.apnic.net 
nserver:   tinnie.arin.net 
mnt-by:    MAINT-APNIC-AP 
mnt-lower: MAINT-AP-DNS 
changed:   inaddr@apnic.net 20021023 
changed:   inaddr@apnic.net 20040109 
changed:   hm-changed@apnic.net 20091007 
changed:   hm-changed@apnic.net 20111208 
source:    APNIC 

Reverse Zone 

Contacts 

Nameservers 

Maintainers 



IPv6 Reverse Delegations  
  



Reverse DNS Tree – with IPv6 
Root . 

net org com arpa 

iana apnic in-addr 

202 203 

64 

22 

ip6 

int 

IPv6 addresses 

RFC 
3152 

✕ 



IPv6 Representation in the DNS 

•  Forward lookup support: Multiple RR records for name to 
number 
–  AAAA (Similar to A RR for IPv4 ) 

•  Reverse lookup support:  
–  Reverse nibble format for zone ip6.arpa  



IPv6 Reverse Lookups – PTR records 

•  Similar to the IPv4 reverse record 

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.ip6.arpa.    

 IN    PTR test.ip6.example.com. 

•  Example: The reverse name lookup for a host with address 
3ffe:8050:201:1860:42::1 
 
$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa. 
 
1.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0  14400  IN PTR 
host.example.com. 



IPv6 forward and reverse mappings 

•  Existing A record will not accommodate the 128 bit 
addresses for IPv6 

•  BIND expects an A record’s record-specific data to be a 32-
bit address (in dotted-octet format) 

•  An address record 
–  AAAA (RFC 1886) 

•  A reverse-mapping domain 
–  ip6.arpa 



IPv6 forward lookups 

•  Multiple addresses possible for any given name 
–  Ex: in a multi-homed situation 

•  Can assign A records and AAAA records to a given name/
domain 

•  Can also assign separate domains for IPv6 and IPv4 



Sample forward lookup file 
;; domain.edu   
$TTL          86400 
@    IN      SOA     ns1.domain.edu. root.domain.edu. ( 

  20121115  ; serial - YYYYMMDDXX 
  21600   ; refresh - 6 hours 
  1200   ; retry - 20 minutes 
  3600000  ; expire - long time 
  86400)  ; minimum TTL - 24 hours 

;; Nameservers 
  IN  NS  ns1.domain.edu. 
  IN  NS  ns2.domain.edu. 

 
;; Hosts with just A records 
host1   IN  A  1.0.0.1 
 
;; Hosts with both A and AAAA records 
host2   IN  A  1.0.0.2 

  IN  AAAA  2001:468:100::2 



Sample reverse lookup file 

;; 0.0.0.0.0.0.1.0.8.6.4.0.1.0.0.2.rev 
;; These are reverses for 2001:468:100::/64) 
;; File can be used for both ip6.arpa and ip6.int. 
$TTL          86400 
@    IN      SOA     ns1.domain.edu. root.domain.edu. ( 

   2002093000   ; serial - YYYYMMDDXX 
   21600   ; refresh - 6 hours 
   1200   ; retry - 20 minutes 
   3600000   ; expire - long time 
   86400)   ; minimum TTL - 24 hours 

;; Nameservers 
  IN  NS  ns1.domain.edu. 
  IN  NS  ns2.domain.edu. 

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0  IN  PTR  host1.ip6.domain.edu 
2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0  IN  PTR  host2.domain.edu 
;; 
;; Can delegate to other nameservers in the usual way 
;; 
 



Questions 



Troubleshooting 



Why Troubleshoot? 

•  What Can Go Wrong? 
–  Misconfigured zone 
–  Misconfigured server 
–  Misconfigured host 
–  Misconfigured network 



Tools 

•  BIND Logging Facility 

•  named's built-in options 

•  ping and traceroute 

•  tcpdump and wireshark 

•  dig and nslookup 



The Best Way To Handle Mistakes 

•  Assume You Will Make Them 

•  Prepare The Name Server via Logging 



BIND Logging 

•  Telling named which messages to send 
–  category specification 

•  Telling named where to send messages 
–  channel specification 



BIND channels 
•  BIND can use syslog 
•  BIND can direct output to other files 

–  Example: 
 
 channel my_dns_log { 
 file "seclog" versions 3 size 10m; 
 print-time yes; 
 print-category yes; 
 print-severity yes; 
 severity debug 3; 
}; 



BIND Categories 

•  BIND has many categories 

•  Short descriptions of each can be found in the 
Administrator's Reference Manual (ARM) 

–  Example: 
 
category queries { my_dns_log; };  



So You've Set Up A Server 

•  What testing should be done? 

•  From Basic liveness 
–  Is the (right) server running? 
–  Is the machine set up correctly? 

•  To data being served 
–  Has the zone loaded? 
–  Have zone transfers happened? 



Checking the Configuration 

•  To see named start, use the -g flag 
–  Keeps named process in the foreground 
–  Prints some diagnostics 
–  But does not execute logging 

•  When satisfied with named's start, kill the process and start 
without –g flag 

•  Other option 
–   % named-checkconf 
–  checks syntax only 



Is the Server Running? 
•  Once the name server is thought to be running, make 

sure it is 
% dig @127.0.0.1 version.bind chaos txt 

•  This makes the name server do the simplest lookup it 
can - its version string 

•  This also confirms which version you started 
–  Common upgrade error: running the old version, forgetting to 

'make install' 



Is the Server Data Correct? 

•  Now that the server is the right one (executable) 
% dig @127.0.0.1 <zone> soa 
 

•  Check the serial number to make sure the zone has 
loaded 

 
•  Also test changed data in case you forgot to update the 

serial number 
 
•  When we get to secondary servers, this check is made 

to see if the zone transferred 



Is the Server Reachable? 
•  If the dig tests fail, its time to test the 

environment (machine, network) 
% ping <server machine ip address> 

•  This tests basic network flow, common errors 
– Network interface not UP 
– Routing to machine not correct 

•  Pinging 'locally' is useful, believe it or not 
– Confirms that the IP address is correctly configured 



Is the Server Listening? 

•  If the server does not respond, but machine responds to 
ping 
–  look at system log files 
–  telnet server 53 
–  firewall running? 

•  Server will run even if it can't open the network port 
–  logs will show this 
–  telnet opens a TCP connection, tests whether port was opened at all 



Using the Tools 

•  named itself 

•  dig/nslookup 

•  host diagnostics 

•  packet sniffers 



Built in to named 

•  named -g to retain command line 
–  named -g -c <conf file> 
–  keeps named in foreground 

•  named -d <level> 
–  sets the debug output volume 
–  <level>'s aren't strictly defined 
–  -d 3 is popular, -d 99 gives a lot of detail 



dig 

•  domain internet groper 
–  already used in examples 
–  best tool for testing 
–  shows query and response syntax 
–  documentation 

% man dig 

% dig -help 

•  Included in named distribution 



Flags Flags Meaning 
AA Authoritative answer 
RD Recursion desired 
RA Recursion Available 
AD Authenticated Data (DNSSEC only) 
CD 

Status Response Code 
0 - NOERR No error 
1 - FORMERR Format error 
2 - SERVFAIL Nameserver unreachable 
3 - NXDOMAIN Domain name not existing 
4 - NOTIMPL Not implemented 
5 - REFUSED Request refused  



Non-BIND Tools 

•  Tools to make sure environment is right 
–  Tools to look at server machine 
–  Tools to test network 
–  Tools to see what messages are on the network 



ifconfig 

•  InterFace CONFIGuration 
% ifconfig -a 
–  shows the status of interfaces 
–  operating system utility 

•  Warning, during boot up, ifconfig may configure interfaces 
after named is started 
–  named can't open delayed addresses 

•  Documentation 
% man ifconfig 



ping 

•  Checks routing, machine health 
–  Most useful if run from another host 
–  Could be reason "no servers are reached" 
–  Can be useful on local machine - to see if the interface is properly 

configured 



traceroute 

•  If ping fails, traceroute can help pinpoint where trouble lies 
–  the problem may be routing 
–  if so - it's not named that needs fixing! 
–  but is it important to know... 



tcpdump and wireshark 

•  Once confident in the environment, problems with DNS 
setup may exist 

•  To see what is happening in the protocol, use traffic sniffers 

•  These tools can help debug "forwarding" of queries 



Address Match Lists 
  



Elements in an address match list 

•  Individual IP addresses 

•  Addresses/netmask pairs 

•  Names of other ACLs 

•  In some contexts,  key names 

  



Purposes in Bind 

•  Restricting queries & zone xfer 

•  Authorizing dynamic updates 

•  Selecting interfaces to listen on 

•  Sorting responses 

 
*Address match lists are always enclosed in curly braces. 



Notes on Address Match list 

•  Elements must be separated by “ ; ”  

•  The list must be terminated with a “ ; ” 

•  Elements of the address match list are checked 
sequentially. 

•  To negate elements of the address match list  prepend 
them with “!” 

•  Use acl statement to name an address match list. 

•  acl must be define before it can be used elsewhere. 



Example: Address match lists 
•  For network 192.168.0.0 255.255.255.0 

{ 192.168.0.0/24; } 

•  For network plus loopback 
{ 192.168.0.0/24; 127.0.0.1; } 

•  Addresses plus key name 
{ 192.168.0.0/24; 127.0.0.1; tequila.apnic.net;} 
 
 



The acl Statement 

•  Syntax: 

 acl <acl name> { address match list>}; 

 

•  Example: 

 acl internal { 127.0.0.1; 192.168.0/24; }; 

 acl dynamic-update { key dhcp.apnic.net; }; 



Notes on the acl Statement 

•  The acl name need not be quoted. 

•  There are four predefined ACLs: 
any    (Any IP address) 
none    (No IP address) 
localhost  (loopback, 127.0.0.1) 
localnets  (all networks the name server is directly connected to) 



Blackhole 
options   {

 blackhole { ACL-name or itemized 
list; };

          };



Allow-transfer 
zone "myzone.example." {
type master;
file "myzone.example.";
allow-transfer { ACL-name or    
itemized list; };
     };



Allow-Query 
zone "myzone.example." {
type master;
file "myzone.example.";
allow-query { ACL-name or 
itemized list; };
      };



Listen-on 
options {
        listen-on port # { ACL-
        name or itemized list;};
        };



Summary 

•  ACLs and Configuration options can be used to create 
simple split DNS.  

•  It is cumbersome and difficult to maintain.  

•  Good operational practice suggests that ACLs and 
configuration options be reviewed regularly to ensure that 
they accurately reflect desired behaviour 



Views 

  The view statement is a powerful new feature of BIND 9 that 
lets a name server answer a DNS query differently 
depending on who is asking. It is particularly useful for 
implementing split DNS setups without having to run 
multiple servers. 

 



Syntax 

•  view view_name  
 [class] { 
 match-clients { address_match_list } ; 
 match-destinations {        

    address_match_list } ; 
 match-recursive-only yes_or_no ; 
      [ view_option; ...] 
      [ zone_statement; ...] 
}; 



Example Config 

•  view "internal" { 
      // This should match our internal networks. 
      match-clients { 10.0.0.0/8; }; 
 
      // Provide recursive service to internal clients only. 
      recursion yes; 
 
      // Provide a complete view of the example.com zone 
      // including addresses of internal hosts. 
      zone "example.com" { 
            type master; 
            file "example-internal.db"; 
      }; 
}; 



Continued 

view "external" { 
      // Match all clients not matched by the previous view. 
      match-clients { any; }; 
 
      // Refuse recursive service to external clients. 
      recursion no; 
 
      // Provide a restricted view of the example.com zone 
      // containing only publicly accessible hosts. 
      zone "example.com" { 
           type master; 
           file "example-external.db"; 
      }; 
}; 



Questions 



DNS Security 
  



Cryptography 

•  Cryptography deals with creating documents that can be 
shared secretly over public communication channels 

•  Other terms closely associated 
–  Cryptanalysis (breaking an encoded data without the knowledge of 

the key) 
–  Cryptology (combination of cryptography and cryptanalysis) 

•  Cryptography is a function of plaintext and a cryptographic 
key 

C = F(P,k) Notation: 
Plaintext (P) 
Ciphertext (C) 
Cryptographic Key (k) 



Encryption 
•  process of transforming plaintext to ciphertext using a 

cryptographic key 
•  Used all around us 

–  In Application Layer – used in secure email, database sessions, and 
messaging 

–  In session layer – using Secure Socket Layer (SSL) or Transport Layer 
Security (TLS) 

–  In the Network Layer – using protocols such as IPSec 

•  Benefits of good encryption algorithm: 
–  Resistant to cryptographic attack 
–  They support variable and long key lengths and scalability 
–  They create an avalanche effect 
–  No export or import restrictions 

•  Two general types: 
–  Symmetric and Asymmetric 



Encryption and Decryption 

Plaintext 

ENCRYPTION 
ALGORITHM 

DECRYPTION 
ALGORITHM 

Ciphertext Plaintext 

Encryption Key Decryption Key 



Symmetric Key Algorithm 

•  Uses a single key to both encrypt and decrypt information 

•  Also known as a secret-key algorithm 
–  The key must be kept a “secret” to maintain security 
–  This key is also known as a private key 

•  Follows the more traditional form of cryptography with key 
lengths ranging from 40 to 256 bits. 

•  Examples of symmetric key algorithms: 
–  DES, 3DES, AES, IDEA, RC5, RC6, Blowfish 



Symmetric Encryption 

Plaintext 

ENCRYPTION 
ALGORITHM 

DECRYPTION 
ALGORITHM 

Ciphertext Plaintext 

Encryption Key Decryption Key 

Same shared secret key 

Shared Key Shared Key Symmetric Key  
Cryptography 



Symmetric Key Algorithm 

•  DES – block cipher using shared key encryption, 56-bit 

•  3DES (Triple DES) – a block cipher that applies DES three 
times to each data block 

•  AES – replacement for DES; it is the current standard 

•  RC4 – variable-length key, “stream cipher” (generate 
stream from key, XOR with data) 

•  RC6 

•  Blowfish 



Asymmetric Encryption 

Plaintext 

ENCRYPTION 
ALGORITHM 

DECRYPTION 
ALGORITHM 

Ciphertext Plaintext 

Encryption Key Decryption Key 

Public Key Private Key Asymmetric Key  
Cryptography 

Different keys 



Asymmetric Key Algorithm 

•  RSA – the first and still most common implementation 

•  DSA – specified in NIST’s Digital Signature Standard 
(DSS), provides digital signature capability for 
authentication of messages 

•  Diffie-Hellman – used for secret key exchange only, and not 
for authentication or digital signature 

•  ElGamal – similar to Diffie-Hellman and used for key 
exchange 

•   PKCS – set of interoperable standards and guidelines 



Symmetric vs. Asymmetric Key 

Symmetric  Asymmetric 
generally fast  
Same key for both encryption and 
decryption 
 

Can be 1000 times slower 
Uses two different keys (public and 
private) 
Decryption key cannot be calculated 
from the encryption key 
Key lengths: 512 to 4096 bits 
Used in low-volume  
 



Hash Functions 

•  produces a condensed representation of a message (hashing) 

•  The fixed-length output is called the hash or message digest 

•  A hash function takes an input message of arbitrary length and 
outputs fixed-length code. The fixed-length output is called the 
hash, or the message digest, of the original input message.  

•  A form of signature that uniquely represents the data 

•  Uses:  
–  Verifying file integrity - if the hash changes, it means the data is either 

compromised or altered in transit. 
–  Digitally signing documents 
–  Hashing passwords  



Hash Functions 

•  Message Digest (MD) Algorithm  
–  Outputs a 128-bit fingerprint of an arbitrary-length input 
–  MD4 is obsolete, MD5 is widely-used 

•  Secure Hash Algorithm (SHA) 
–  SHA-1 produces a 160-bit message digest similar to MD5 
–  Widely-used on security applications (TLS, SSL, PGP, SSH, S/MIME, 

IPsec) 
–  SHA-256, SHA-384, SHA-512 are also commonly used, which can 

produce hash values that are 256, 384, and 512-bits respectively 

•  RIPEMD 
–  Derived from MD4, but performs  
–  RIPEMD-160 is the most popular version  



Digital Signature 

•  A digital signature is a message appended to a packet 

•  The sender encrypts message with own private key instead 
of encrypting with intended receiver’s public key 

•  The receiver of the packet uses the sender’s public key to 
verify the signature. 

•  Used to prove the identity of the sender and the integrity of 
the packet 



Digital Signature 

•  Two common public-key digital signature techniques: 
–  RSA (Rivest, Shamir, Adelman) 
–  DSS (Digital Signature Standard) 

•  Used in a lot of things: 
–  Email, software distribution, electronic funds transfer, etc  

•  A common way to implement is to use a hashing algorithm 
to get the message digest of the data, then use an 
algorithm to sign the message 

131 



Message Authentication Code 

•  Message authentication code provides 
–  Integrity (checks that data has not been altered) 
–  Authenticity (verifies the origin of data) 

•  In the sender side, the message is passed through a MAC 
algorithm to get a MAC (also called Tag) 

•  In the receiver side, the message is passed through the same 
algorithm. The output is compared with the received tag and 
should match 

•  Sender and receiver uses the same secret key 
•  Hash-based Message Authentication Code (RFC2104) 

–  Uses hash function to generate the MAC 
–  “HMACs are less affected by collisions than their underlying hashing 

algorithms alone.” 



DNS Security - Background 

•  The original DNS protocol wasn’t designed with security in 
mind 
–  It has very few built-in security mechanism 

•  As the Internet grew wilder & wollier, IETF realized this 
would be a problem 
–  For example DNS spoofing was to easy 

•  DNSSEC and TSIG were develop to help address this 
problem 

•  Some security problems: 
–  Using reverse DNS to impersonate hosts 
–  Software bugs (buffer overflows, bad pointer handling) 
–  Bad crypto (predictable sequences, forgeable signatures) 
–  Cache poisoning (putting inappropriate data into the cache) 

https://wiki.tools.isoc.org/DNSSEC_History_Project 



DNS Cache Poisoning 

(pretending to be 
the authoritative 

zone) 

ns.example.com 
Webserver  

(192.168.1.1) 

DNS Caching  
Server 

Client  

I want to access  
www.example.com 

1

QID=64571 
2

QID=64569 

QID=64570 

QID=64571 

www.example.com 192.168.1.1 

match! 

www.example.com 192.168.1.99 
3

3

Root/GTLD 

QID=64571 



DNS Amplification 

•  A type of reflection attack combined with amplification 
–  Source of attack is reflected off another machine 
–  Traffic received is bigger (amplified) than the traffic sent by the 

attacker 

•  UDP packet’s source address is spoofed 



DNS Amplification 
Queries for 

www.example.com 

Attacker 

ns.example.com 

Victim Machine 

DNS Recursive server 

Compromised  
Machines 

(spoofed IP) 

Root/GTLD 

www.example.com 192.168.1.1 



Open Resolvers 

•  DNS servers that answer recursive queries from any host 
on the Internet  

•  http://openresolverproject.org/ 

•  Check if you’re running open resolvers 
–  http://dns.measurement-factory.com/cgi-bin/openresolvercheck.pl 

•  More statistics at  
–  http://dns.measurement-factory.com/surveys/openresolvers/ASN-

reports/latest.html 



Open Resolvers 

Reference: http://openresolverproject.org/ 

As of 27 Oct 2013: 
24,910,951 servers responded to udp/53 probe  
19,834,410 returned OK   



Response Rate Limiting (RRL) 

•  Protects against DNS amplification attack 

•  Implemented in CZ-NIC Knot (v1.2-RC3), NLNetLabs NSD 
(v3.2.15), and ISC BIND 9 (v9.9.4) release 
 rate-limit { 
               responses-per-second 5; 
               log-only yes; 
      }; 

•  If using older versions, a patch is available from  
–  http://ss.vix.su/~vjs/rrlrpz.html 
–  patch –p0 -l 



DNS Changer 

•  “Criminals have learned that if they can control a user’s 
DNS servers, they can control what sites the user connects 
to the Internet.” 

•  How: infect computers with a malicious software (malware)  

•  This malware changes the user’s DNS settings with that of 
the attacker’s DNS servers 

•  Points the DNS configuration to DNS resolvers in specific 
address blocks and use it for their criminal enterprise 

•  For more: see the NANOG presentation by Merike 



Rogue DNS Servers 

•  85.225.112.0 through 85.255.127.255 

•  67.210.0.0 through 67.210.15.255 

•  93.188.160.0 through 93.188.167.255 

•  77.67.83.0 through 77.67.83.255 

•  213.109.64.0 through 213.109.79.255 

•  64.28.176.0 through 64.28.191.255 

•  If your computer is configured with one of these DNS 
servers, it is most likely infected with DNSChanger malware 



Top DNS Changer Infections 

•  By country (as of 11 June 2012): 
–  USA - 69517 
–  IT – 26494 
–  IN – 21302 
–  GB – 19589 
–  DE – 18427 

•  By ASNs 
–  AS9829 (India) – 15568 
–  AS3269 – 13406 
–  AS7922 – 11964 
–  AS3320 – 9250 
–  AS7132 – 6743 

•  More info at http://dcwg.org/ 



DNS Changer – Victim Count 

Source: http://www.dcwg.org 



DNS Changer (News) 



Securing the Nameserver 
•  Run the most recent version of the DNS software 

–  Apply the latest patches 

•  Hide version 
•  Restrict queries 

–  Allow-query { acl_match_list; }; 
•  Prevent unauthorized zone transfers 

–  Allow-transfer { acl_match_list; }; 
•  Run BIND with the least privilege (use chroot) 
•  Randomize source ports 

–  don’t use query-source option 

•  Secure the box 
•  Use TSIG and DNSSEC 



Sender Policy Framework (SPF)  

•  Using DNS for email validation 

•  Checks the sender IP address  

•  Defined in RFC 4408 with updates in RFC 6652 

apnic.net.   3600  IN  TXT  "v=spf1 mx 
a:clove.apnic.net a:asmtp.apnic.net ip4:203.119.93.0/24 
ip4:203.119.101.0/24 ip4:203.89.255.141/32 
ip4:203.190.232.30/32 ip4:122.248.232.184/32 
include:_spf.google.com -all" 



DANE 

•  DNS-Based Authentication of Named Entities 

•  RFC 6698 (proposed standard) 

•  “secure method to associate the certificate that is obtained 
from the TLS server with a domain name using DNS” 

•  Adds a TLSA resource record 



DNS RPZ 

•  Resource Policy Zone 

•  Developed for ISC Bind. Built in from version 9.8 

•  Turns a recursive DNS server into a “DNS firewall” 

•  “reputation-based” zones 

•  Like creating a reputation server for recursive DNS servers 
–  Function is similar to DNSBL for email SMTP servers 

•  Blocks DNS resolution to malicious hosts 



Questions 



Transaction Signature 
(TSIG) 



DNS Protocol Vulnerability 

•  DNS data can be spoofed and corrupted between master 
server and resolver or forwarder 

•  The DNS protocol does not allow you to check the validity 
of DNS data 
–  Exploited by bugs in resolver implementation (predictable 

transaction ID) 
–  Polluted caching forwarders can cause harm for quite some time 

(TTL) 
–  Corrupted DNS data might end up in caches and stay there for a 

long time 

•  How does a slave (secondary) know it is talking to the 
proper master (primary)? 



DNS: Data Flow 

master Caching forwarder 

Zone administrator 

Zone file 

Dynamic 
updates 

1

2

slaves 

3

4

5

 
resolver 

 



DNS Vulnerabilities 

master Caching forwarder 

Zone administrator 

Zone file 

Dynamic 
updates 

1

2

slaves 

3

4

5

 
resolver 

 

Server protection Data protection

Corrupting data Impersonating master

Unauthorized updates

Cache impersonation

Cache pollution by
Data spoofing



TSIG Protected Vulnerabilities 

master Caching forwarder 

Zone administrator 

Zone file 

Dynamic 
updates 

slaves  
resolver 

 

Impersonating master

Unauthorized updates



What is TSIG - Transaction Signature? 

•  A mechanism for protecting a message from a primary to 
secondary and vice versa 

•  A keyed-hash is applied (like a digital signature) so recipient 
can verify the message 
–  DNS question or answer 
–  & the timestamp 

•  Based on a shared secret - both sender and receiver are 
configured with it 
–  TSIG/TKEY uses DH, HMAC-MD5, HMAC-SHA1, HMAC-SHA224, 

HMAC-SHA512 among others 



What is TSIG - Transaction Signature? 

•  TSIG (RFC 2845) 
–  authorizing dynamic updates & zone transfers 
–  authentication of caching forwarders 

•  Used in server configuration, not in zone file 



SOA 
…
SOA

Sig ...

Master

AXFR

TSIG example 

Slave
KEY:  
%sgs!f23fv

KEY:  
%sgs!f23fv

AXFR

Sig ...Sig ...

SOA 
…
SOA

Sig ...

Slave
KEY:  
%sgs!f23fv

verification

verification

Query: AXFR

Response: Zone



TSIG steps 

1.  Generate secret 

2.  Communicate secret 

3.  Configure servers 

4.  Test 



TSIG - Names and Secrets 

•  TSIG name 
–  A name is given to the key, the name is what is transmitted in the 

message (so receiver knows what key the sender used) 

•  TSIG secret value 
–  A value determined during key generation 
–  Usually seen in Base64 encoding 



TSIG – Generating a Secret 

•  dnssec-keygen 
–  Simple tool to generate keys 
–  Used here to generate TSIG keys 

> dnssec-keygen -a <algorithm> -b <bits> -n host 
<name of the key>



TSIG – Generating a Secret 

•  Example
 
> dnssec-keygen –a HMAC-MD5 –b 128 –n HOST ns1-
ns2.pcx.net 

 
This will generate the key 
> Kns1-ns2.pcx.net.+157+15921 
 
>ls 
Kns1-ns2.pcx.net.+157+15921.key 
Kns1-ns2.pcx.net.+157+15921.private 



TSIG – Generating a Secret 

•  TSIG should never be put in zone files 
–  might be confusing because it looks like RR: 

ns1-ns2.pcx.net. IN KEY 128 3 157 nEfRX9…bbPn7lyQtE=

 



TSIG – Configuring Servers 

•  Configuring the key 
–  in named.conf file, same syntax as for rndc 
–  key { algorithm ...; secret ...;} 

•  Making use of the key 
–  in named.conf file 
–  server x { key ...; }
–  where 'x' is an IP number of the other server 



Configuration Example – named.conf 
Primary server 10.33.40.46

key ns1-ns2.pcx. net {
algorithm hmac-md5;
secret "APlaceToBe";

};
server 10.33.50.35 {

keys {ns1-ns2.pcx.net;};
};
zone "my.zone.test." {

type master;
file “db.myzone”;
allow-transfer {
key ns1-ns2.pcx.net ;};

};

Secondary server 10.33.50.35

key ns1-ns2.pcx.net {
algorithm hmac-md5;
secret "APlaceToBe";

};
server 10.33.40.46 {
  keys {ns1-ns2.pcx.net;};
};
zone "my.zone.test." {

type slave;
file “myzone.backup”;
masters {10.33.40.46;};

};

You can save this in a file and refer to it in the named.conf  
using ‘include’ statement: 
include “/var/named/master/tsig-key-ns1-ns2”;  



TSIG Testing : dig 

•  You can use dig to check TSIG configuration 
–  dig  @<server> <zone> AXFR -k <TSIG keyfile>

$ dig @127.0.0.1 example.net AXFR \
  -k Kns1-ns2.pcx.net.+157+15921.key
 

•  Wrong key will give “Transfer failed” and on the server the 
security-category will log this. 



TSIG Testing - TIME! 

•  TSIG is time sensitive - to stop replays 
–  Message protection expires in 5 minutes 
–  Make sure time is synchronized 
–  For testing, set the time 
–  In operations, (secure) NTP is needed 



TSIG steps 

1.  Generate secret 
–  dnssec-keygen -a <algorithm> -b <bits> -n host 

<name of the key> 

2.  Communicate secret 
–  scp <keyfile> <user>@<remote-server>:<path>  

3.  Configure servers 
–  key { algorithm ...; secret ...;} 
–  server x { key ...; } 

4.  Test 
–  dig  @<server> <zone> AXFR -k <TSIG keyfile>



Questions 



DNSSEC 



Vulnerabilities protected by  
DNSKEY / RRSIG / NSEC 

master Caching forwarder 

Zone administrator 

Zone file 

Dynamic 
updates 

slaves  
resolver 

 

Cache impersonation

Cache pollution by
Data spoofing



RFC 
4035 

RFC 
4034 

DNS Security Extensions (DNSSEC) 

•  Protects the integrity of data in the DNS by establishing a 
chain of trust 

•  Uses public key cryptography – each link in the chain has a 
public/private key pair 

•  A form of digitally signing the data to attest its validity 

•  Standard is defined in RFC4033, RFC4034, and RFC4035 

•  Guarantees 
–  Authenticity 
–  Integrity 
–  Non-existence of a domain 

RFC 
4033 



DNSSEC History 

•  1990: Steven Bellovin discovers a major flaw in the DNS 
•  1995: Bellovin publishes his research; DNSSEC (as it became 

later known) becomes a topic within IETF 
•  1997: RFC 2065 (adding security extensions) was published 
•  1998: Dan Kaminsky discovers some security flaw 
•  1999: RFC 2535, the DNSSEC protocol, is published; BIND 9 

developed to be DNSSEC-capable 
•  2001: key handling in RFC2535 is causing operational problems 
•  2005: Three new RFCs published to update RFC2535 

–  RFC 4033 (DNS Security Introduction and Requirements) 
–  RFC 4034 (Resource Records for DNS Security Extensions) 
–  RFC 4035 (Protocol Modifications) 

https://wiki.tools.isoc.org/DNSSEC_History_Project 



DNSSEC History 

•  2005: In October, Sweden (.SE) becomes the first ccTLD to 
deploy DNSSEC 

•  2008: new DNSSEC record created to address privacy 
concerns (RFC 5155) 

•  2010 
–  In July 15, the root zone was signed 
–  In July 29, .edu was signed 
–  In December 9, .net was signed 

•  2011: In March 31, .com was signed 

https://wiki.tools.isoc.org/DNSSEC_History_Project 



DNSSEC Resource Records 

•  3 Public key crypto related RRs 
–  RRSIG = Signature over RRset made using private key  
–  DNSKEY = Public key, needed for verifying a RRSIG 
–  DS = Delegation Signer; ‘Pointer’ for building chains of authentication 

•  One RR for internal consistency  
–  NSEC = Next Secure; indicates which name is the next one in the 

zone and which typecodes are available for the current name 
•  authenticated non-existence of data 

RFC 
4034 



DNSSEC Resource Records 

•  DNSKEY, RRSIG, and NSEC records provide mechanisms 
to establish authenticity and integrity of data 

•  DS record provides a mechanism to delegate trust to public 
keys of third parties 



DNSSEC RRs 

•  Data authenticity and integrity by signing the Resource 
Records Sets with private key 

•  Public DNSKEY is used to verify the RRSIG 

•  Children sign their zones with their private key 
–  Authenticity of that key established by signature/checksum by the 

parent (DS) 

•  Ideal case: one public DNSKEY distributed 



RR’s and RRsets 

•  Resource Record: 
Name   TTL   class   type  rdata  
www.example.net.  7200   IN  A  192.168.1.1 

•  RRset: RRs with same name, class and type: 
www.example.net. 7200  IN  A  192.168.1.1 

      A  10.0.0.3 
      A  172.10.1.1 

•  RRsets are signed, not the individual RRs 



DNSKEY 

•  Contains the zone’s public key 

•  Uses public key cryptography to sign and authenticate DNS 
resource record sets (RRsets). 

•  Example: 

irrashai.net. IN DNSKEY 256 3 5 
( AwEAAagrVFd9xyFMQRjO4DlkL0dgUCtogviS+FG9Z6Au3h1ERe4EIi3L 
X49Ce1OFahdR2wPZyVeDvH6X4qlLnMQJsd7oFi4S9Ng+hLkgpm/n+otE 
kKiXGZzZn4vW0okuC0hHG2XU5zJhkct73FZzbmBvGxpF4svo5PPWZqVb 
H48T5Y/9 ) ; key id = 3510 

16-bit field flag 

Protocol octet 

DNSKEY algorithm number 

Public key (base64) 



DNSKEY 

•  Also contains some timing metadata – as a comment in the 
key file 

 
; This is a key-signing key, keyid 19996, for myzone.net. 

; Created: 20121102020008 (Fri Nov  2 12:00:08 2012) 

; Publish: 20121102020008 (Fri Nov  2 12:00:08 2012) 

; Activate: 20121102020008 (Fri Nov  2 12:00:08 2012) 



RRSIG 
•  The private part of the key-pair is used to sign the resource record set (RRset) 

per zone 
•  The digital signature per RRset is saved in an RRSIG record 

irrashai.net.         86400   NS      NS.JAZZI.COM. 

                        86400   NS      NS.IRRASHAI.NET. 

                        86400   RRSIG   NS 5 2 86400 ( 

                                        20121202010528 20121102010528 3510 
          irrashai.net. 

                                        Y2J2NQ+CVqQRjQvcWY256ffiw5mp0OQTQUF8 

                                        vUHSHyUbbhmE56eJimqDhXb8qwl/Fjl40/km 

                                        lzmQC5CmgugB/qjgLHZbuvSfd9W+UCwkxbwx 

                                        3HonAPr3C+0HVqP8rSqGRqSq0VbR7LzNeayl 

                                        BkumLDoriQxceV4z3d2jFv4ArnM= ) 

RR type signed 
Digital signature algorithm 
Number of labels in the  
signed name 

Signature expiry 

Date signed 



NSEC / NSEC3 

•  Next Secure 

•  Forms a chain of authoritative owner names in the zone 

•  Lists two separate things: 
–  Next owner name (canonical ordering) 
–  Set of RR types present at the NSEC RR’s owner name 

•  Also proves the non-existence of a domain 

 
irrashai.net.  NSEC    blog.irrashai.net. A NS SOA MX 

   RRSIG NSEC DNSKEY 



NSEC / NSEC3 

•  “The last NSEC wraps around from the last name in the 
ordered zone to the first” 

•  Each NSEC record also has a corresponding RRSIG 



NSEC RDATA 

•  Points to the next domain name in the zone 
–  also lists what are all the existing RRs for “name” 
– NSEC record for last name “wraps around” to first name 

in zone  

•  Used for authenticated denial-of-existence of data 
–  authenticated non-existence of TYPEs and labels 



NSEC Record example 
$ORIGIN example.net.

@ SOA       …

NS NS.example.net.

DNSKEY …

NSEC   mailbox.example.net. SOA NS NSEC DNSKEY RRSIG

mailbox A 192.168.10.2

NSEC  www.example.net.  A NSEC RRSIG

 WWW A 192.168.10.3

TXT Public webserver

NSEC  example.net. A NSEC RRSIG TXT



Delegation Signer (DS) 

•  Establishes the chain of trust from parent to child zones 
•  Found in the parent’s zone file 
•  In this example, irrashai.net has been delegated from .net. This is 

how it looks like in .net zone file  
 
 
irrashai.net.  IN NS  ns1.irrashai.net. 

      NS  ns2.irrashai.net. 
   IN DS  19996 5 1 (  
    CF96B018A496CD1A68EE7 
    C80A37EDFC6ABBF8175 ) 
   IN DS  19996 5 2 ( 
    6927A531B0D89A7A4F13E11031 
    4C722EC156FF926D2052C7D8D70C50  
    14598CE9 ) 

Key ID 
DNSKEY algorithm (RSASHA1) 

Digest type: 1 = SHA1 
   2 = SHA256 



Delegation Signer (DS) 

•  Delegation Signer (DS) RR indicates that: 
–  delegated zone is digitally signed 
–  indicated key is used for the delegated zone 

•  Parent is authorative for the DS of the childs zone 
– Not for the NS record delegating the childs zone! 
– DS should not be in the childs zone 



Types of Keys 

•  Zone Signing Key (ZSK) 
–  Sign the RRsets within the zone  
–  Public key of ZSK is defined by a DNSKEY RR 

•  Key Signing Key (KSK) 
–  Signed the keys which includes ZSK and KSK and may also be used 

outside the zone 

•  Trusted anchor in a security aware server  

•  Part of the chain of trust by a parent name server 

•  Using a single key or both keys is an operational choice 
(RFC allows both methods) 



Creation of keys 

•  Zones are digitally signed using the private key 

•  Can use RSA-SHA-1, DSA-SHA-1 and RSA-MD5 digital 
signatures 

•  The public key corresponding to the private key used to 
sign the zone is published using a DNSKEY RR 



Chain of Trust 

•  DNSSEC is based on trust 

•  Root is on top of the chain of trust. 
–  Root servers were signed on July 15, 2010. 



Implementing DNSSEC 



DNSSEC - Setting up a Secure Zone 

•  Enable DNSSEC in the configuration file (named.conf) 
–  dnssec-enable yes; dnssec-validation yes; 

•  Create key pairs (KSK and ZSK) 
–  dnssec-keygen -a rsasha1 -b 1024 -n zone 
champika.net 

•  Publish your public key 

•  Signing the zone 

•  Update the config file 
–  Modify the zone statement, replace with the signed zone file 

•  Test with dig   



Updating the DNS Configuration 

•  Enable DNSSEC in the configuration file (named.conf) 
options {  
   directory “….” 
   dnssec-enable yes; 
       dnssec-validation yes; 
 }; 

 

•  Other options that can be added later 
–  auto-dnssec { off | allow | maintain} ; 
–  These options are used to automate the signing and key rollover 

 



Creating key pairs 

•  To create ZSK 
 

dnssec-keygen -a rsasha1 -b 1024 -n zone 
<myzone> 

•  To create KSK 
 

dnssec-keygen -a rsasha1 -b 1400 -f KSK -n 
zone champika.net 



Generating Key Pair 

•  Generate ZSK and KSK 
 
dnssec-keygen -a rsasha1 -b 1024 -n zone <myzone> 
 
Default values are RSASHA1 for algorithm, 1024 bits for ZSK and 2048 bits 
for KSK 
 
The command above can be simplified as: 
dnssec-keygen –f KSK <myzone> 
 
This generates four files. 
 
Note: There has to be at least one public/private key pair for each DNSSEC 
zone 



Publishing your public key 

•  Using $INCLUDE you can call the public key (DNSKEY RR) 
inside the zone file 
 

$INCLUDE /path/Kchampika.net.+005+33633.key ; ZSK 

$INCLUDE /path/Kchampika.net.+005+00478.key ; KSK 

•  You can also manually enter the DNSKEY RR in the zone 
file 



Signing the Zone 

•  Sign the zone using the secret keys: 

 
dnssec-signzone –o <zonename> -N INCREMENT -f 
<output-file> -k <KSKfile> <zonefile> <ZSKfile> 
 
dnssec-signzone –o champika.net db.champika.net 
Kchampika.net.+005+33633 
 

•  Once you sign the zone a file with a .signed extension will 
be created 
–  db.champika.net.signed 



Signing the Zone 

•  Note that only authoritative records are signed  
–  NS records for the zone itself are signed 
–  NS records for delegations are not signed 
–  DS RRs are signed! 
–  Glue is not signed 

•  Difference in the file size 
–  db.champika.net vs. db.champika.net.signed 



Smart Signing 

•  Searches the key repository for any keys that will match the 
zone being signed  
options { 
keys-directory { “path/to/keys”; }; 
 

•  Then the command for smart signing is  
dnssec-signzone –S db.myzone.net 



Publishing the Zone 

•  Reconfigure to load the signed zone. Edit named.conf and 
point to the signed zone. 

 
zone “<myzone>” {  

 type master;  
 # file “db.myzone.net”;  
 file “db.myzone.net.signed”;  

};  



Pushing the DS record 

•  The DS record must now be published by the parent zone. 

•  Contact the parent zone to communicate the KSK to them. 



KSK Key Rollover 

•  Perform scheduled zone maintenance. 

•  KSK rollover using Double signing 

•  When you change the KSK keys, the DS record in the 
parent zone must also be updated. 
dnssec-signzone –o myzone.net –N increment –f <output- \ 
file> -k Kmyzone.net.+005+11111 db.myzone.net \ 
Kmyzone.net.+005+67890  

•  Send the new DS record to the parent, and wait for it to 
propagate.  

•  Remove the old key and resign. 



KSK Key Rollover 

•  Using Pre-publication 

•  In this method, the new key will be published but will not be 
used for signing yet. 

 
dnssec-keygen –K keydir –f ksk –A none <myzone.net>  
rndc loadkeys <myzone.net>  
 

•  Publish both keys, but use only the old one for signing 

•  Wait for the propagation time and TTL of the DNSKEY RR 
to expire. 



KSK Key Rollover 
•  Then use dnssec-settime once you are ready to sign the zone. Use the new 

key for zone signing, leaving the old one published. 
 
dnssec-settime –K keydir –A now Kexample.com.+005+12345  
rndc loadkeys example.com  

•  Wait for the propagation and TTL in the old zone. Set the old key to no 
longer sign with the key, but leaves it in the zone. 
 
dnssec-settime –K keydir -I now Kexample.com.+005+12345  
rndc loadkeys example.com  

•  Now remove the old keys. This completely removes the keys. 
 
dnssec-settime –K keydir -D now Kexample.com.+005+12345  
rndc loadkeys example.com  



Automated Signing 

•  Using RNDC 

 

•  Add the option to named.conf 
auto-dnssec allow; 
 

•  Then you can use the commands: 
rndc loadkeys zone 
rndc sign zone 



Testing the server 

•  Ask a dnssec enabled question from the server and see 
whether the answer contains dnssec-enabled data 
–  Basically the answers are signed 

dig @localhost www.champika.net +dnssec 
+multiline 



Testing with dig: an example 



DNSSEC Key 
Management 



Ways to Deploy DNSSEC 

•  As part of the DNS software used  
–  Manual key management 
–  Can be quite complex 
–  For static environment 
–  Some means of automation using  

•  option commands and scripts 

•  Use with a hardware security module (HSM) 
–  Semi-automatic  
–  Good for dynamic environment 

•  Using an external appliance  
–  ‘dnssec-in-a-box’ 
–  Fully automates key generation, signing and rollover  

DNSSEC tools for BIND,  
NSD, PowerDNS, etc 

HSM,  
OpenDNSSEC 

DNS Appliance 



Hardware Security Module 

•  Cryptographic devices used for storage of the encryption 
keys 
–  Smart cards, PCI cards, USB tokens  

•  It also speeds up the cryptographic key generation 

•  Implements PKCS#11 (Cryptographic Token Key Interface) 
–  A standard interface or API to cryptographic tokens  



DNSSEC Signer Appliance 

DNS Master 
•  Creates the zones 

as per usual 

DNSSEC Signer 
•  Signs the zones 
•  Propagates the 

signed zones 

DNS Server 
•  Answer queries 

•  Can be a pure signer or packaged with an IPAM or a DNS 
server 

•  In pure signer, the hardware appliance interfaces between 
the master/slave servers 

•  Examples: Secure64, Xelerance, SolidDNS, etc 



OpenDNSSEC 



What is OpenDNSSEC? 

•  An open source turn-key solution 
for managing DNSSEC 

•  The goal is to simplify the signing 
process and minimize the 
workload on the admin 

•  Uses PKCS#11 for key storage 

•  Check out the documentation 
–  https://wiki.opendnssec.org/

display/DOCS 

Reference:  http://www.opendnssec.org/about/ 



Installation (on CentOS 6.1) 

•  Install dependencies 
–  LDS (DNS programming library) 
–  libxml2 (libxml2, libxml2-dev, libxml2-utils) 
–  Java 
–  SQLite (sqlite3, libsqlite3, libsqlite3-dev) 
–  MySQL – optional 

•  Install a Hardware Security Module (HSM) 
–  Or an equivalent software emulation 

•  Install OpenDNSSEC 



SoftHSM Installation 

•  Software-only implementation of an HSM 
•  Dependencies 

–  At least Botan 1.10.0 and OpenSSL 0.9.8 

•  Install from a repository or source 
tar xvzf softhsm-<version>.tar.gz 
cd softhsm-<version> 
./configure 
make 
sudo make install 

•  Edit the configuration file and specify the slots to be used 
vi /etc/softhsm.conf 
0:/var/softhsm/slot0.db 



SoftHSM 

•  Although the HSM has been defined, it has to be initialized 
softhsm --init-token –slot 0 –label “opendnssec” 

•  Check that this HSM repository is configured in 
OpenDNSSEC’s conf.xml 
<Repository name="SoftHSM”> 

 <Module>/usr/local/lib/libsofthsm.so</Module> 
    <TokenLabel>OpenDNSSEC</TokenLabel> 
    <PIN>1234</PIN> 
</Repository> 



OpenDNSSEC 

•  Install from repository 
yum –y install opendnssec 

•  Important files 
–  conf.xml – overall configuration 
–  kasp.xml – policies used to sign zones; key and signature policy 
–  zonelist.xml – list of zones that opendnssec will sign 
–  addns.xml – dns adapter configuration 

•  The config folder is set to /etc/opendnssec/ by default 



Conf.xml 

•  overall configuration 
<RepositoryList> - defines the 
HSM 
<Common> - common config 
<Enforcer> - deals with key 
rollover and generation 
<Signer> - the part that constructs 
the signature records to include in the 
zone file 

Note the repository name 

Reference to kasp.xml and zonelist.xml 



Timing Parameters 

•  P[n]Y[n]M[n]DT[n]H[n]M[n]S 

•  P1Y6MT12H – 1 year, 6 months, and 12 hours 

•  P1Y – 1 year (always 365 days) 

•  P1M – 1 month (always 31 days) 



Running OpenDNSSEC 

•  To begin with, run the command 
ods-ksmutil setup 

•  Two daemons must be started – ods-signerd and ods-
enforced. Use the command to start them 
ods-control start 

•  Add zones 
ods-ksmutil zone add --zone <zonename> 

•  This can also be added manually by editing zonelist.xml. If 
you do this, run the command after edit: 
ods-ksmutil update zone list 



Running OpenDNSSEC 

•  To check if the config files are valid 
ods-kaspcheck 

•  To generate the DS record from KSK 
ods-ksmutil key list –v (to get the keytag) 
ods-ksmutil key export –z example.com –e publish –x 
<keytag> 

 



Error Logging  

•  Uses the system’s syslog for logging. Define a log facility to 
where the messages will go 
<Logging> 
<Syslog><Facility>local0</Facility></Syslog> 
</Logging> 

•  Check your logfile – /var/log/messages  
tail –f /var/log/messages | grep ods* 

•  If you have syslog, you can edit /etc/rsyslog.conf to  



Troubleshooting 

•  Some common problems encountered: 

•  Starting opendnssec 
# ods-control start 
Starting enforcer... 
OpenDNSSEC ods-enforcerd started (version 1.4.1), pid 
5601 
Could not start enforcer 

•  Database not updated (when adding zones) 

•  Typo / error in the configuration files. Run 
ods-kaspcheck 



Questions 



Further Readings 

•  DNS Operational Practices 
–  http://tools.ietf.org/html/rfc6781 
–  Informational, published December 2012 

•  A Framework for DNSSEC Policies and DNSSEC Practice 
Statements 
–  http://tools.ietf.org/html/rfc6841 
–  Informational, published January 2013 



Thank you! 
End of Session 


