

Lab Exercise 10.1 – Implementing DNSSEC Created: 27 Aug 2014
Version 3.0 Updated: 29 Aug 2014

Page 1 of 5

Lab 10.1 – Implementing DNSSEC

Objective:
Deploy DNSSEC-signed zones.

Background
DNSSEC (or DNS Security Extensions) provide security to the zone files.

Note:
In the steps below, we are using
 myzone.net - our domain
 db.myzone.net – zonefile for the domain

Kmyzone.net.+005+12345.key/private = ZSK generated
 Kmyzone.net.+005+67890.key/private = KSK generated

Steps:

A. DNSSEC Validation. To allow your recursive DNS servers to validate DNSSEC-signed zones.

1. Update the DNS configuration. Add options in the configuration file named.conf to allow

DNSSEC.

These options must be enabled:

dnssec-enable yes;

dnssec-validation yes|auto;

dnssec-enable allows named to respond to DNS requests from DNSSEC-aware clients.
The default is yes, but is best added in the named.conf so you know how to turn it off.

If dnssec-validation is set to auto, it defaults to the DNS root zone as the trust anchor.

If set to yes, a trust anchor must be explicitly configured using the managed-keys or trusted-
keys option.

managed-keys {

 // root key

 “.” Initial-key 257 3 3 “<key-here>”

};

trusted-keys {

 // parent zone

 <myzone.net> 257 3 5 “<key-here>”;

};

Lab 10.1 – Implementing DNSSEC

Lab Exercise 10.1 – Implementing DNSSEC Created: 27 Aug 2014
Version 3.0 Updated: 29 Aug 2014

Page 2 of 5

2. Using the dig command, do a lookup for a dnssec-enabled domain. The output should show
an RRSIG next to the record you asked.

dig @nameserver +dnssec +multiline www.apnic.net

Also check for the AD bit in the message header flags. It should look something like:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 40679
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

B. Signing the zone.

1. Generate the key pair.

This command generates the ZSK.

dnssec-keygen –r /dev/random –a <algorithm> –b <keysize> \

–n ZONE <myzone>

ex:

dnssec-keygen –r /dev/random –a rsasha1 –b1024 –n ZONE myzone.net

The	
 defaults	
 are	
 RSASHA1	
 for	
 the	
 algorithm,	
 with	
 1024	
 bits	
 for	
 ZSK	
 and	
 2048	
 bits	
 for	
 KSK.	

Since	
 these	
 are	
 all	
 defaults,	
 we	
 can	
 just	
 issue	
 the	
 command:	

dnssec-keygen –r /dev/random <myzone>

This command generates the KSK

dnssec-keygen –a <algorithm> –b <keysize> –f KSK –n ZONE <myzone>

Or simply

dnssec-keygen –f KSK <myzone>

This generates 4 files.

2. Include the public DNSKEYs in the zone file.

You can either copy the entire file or reference to it using the $INCLUDE directive. To do the
latter, simply add the lines below. Note that you are including only the public portion (.key)
into the zone file. The private portion (.private) must be kept secure.

$INCLUDE “K<myzone>.+005+<id_of_zsk>.key”

Lab 10.1 – Implementing DNSSEC

Lab Exercise 10.1 – Implementing DNSSEC Created: 27 Aug 2014
Version 3.0 Updated: 29 Aug 2014

Page 3 of 5

$INCLUDE “K<myzone>.+005+<id_of_ksk>.key”

3. Sign the zone using the secret keys. The syntax is:

dnssec-signzone [options] {zonefile} [key…]

dnssec-signzone –o <zonename> –N INCREMENT -f <output-file> -t \

–k <KSKfile> <zonefile> <ZSKfile>

ex:

dnssec-signzone –o myzone.net –N INCREMENT –f <output-file> -t -k \
Kmyzone.net.+005+12345 db.myzone.net Kmyzone.net.+005+67890

If –f is not specified, the output file will append a .signed in the zonefile.

<myzone>.signed

Smart Signing

You can use the –S option so that keys will be imported into the zone automatically. Specify
a keys repository in named.conf, which will be checked by named when executed.

options {

 keys-directory { “/path/to/keys”;

};

Then issue the command:

dnssec-signzone –S db.myzone.net

The output file is bigger than the original zone file. Check with the commands ls –al or	

wc.

C. NSEC and NSEC3.

NSEC records are created to prove the non-existence of a record. It builds a linked list of all
the records in the zone file. The problem with this is it allows anyone to list the zone content.
This is called “zone walking.” Some tools, like the ldns-walk (included in the LDNS
library), can be used to do exactly this.

NSEC3 can be used to provide more security. It uses a hashing algorithm to output a “hash”
to replace the real domain names. This makes it difficult for an attacker, but not totally
impossible.

Lab 10.1 – Implementing DNSSEC

Lab Exercise 10.1 – Implementing DNSSEC Created: 27 Aug 2014
Version 3.0 Updated: 29 Aug 2014

Page 4 of 5

1. Using NSEC3 to generate keys.

To do this, you may use NSEC3RSASHA1 as your algorithm. The easier way to do this is to
use -3 option instead. This option allows a few other algorithms such as RSASHA256 and
RSAHSHA512 but sets NSEC3RSASHA1 as default.

dnssec-keygen –r /dev/random -3 <myzone>

dnssec-keygen –f ksk –r /dev/random -3 <myzone>

2. Sign the zone with a salt.

dnssec-signzone –A -3 <salt> –o <zonename> –N INCREMENT -f <output-
file> -t –k <KSKfile> <zonefile> <ZSKfile>

The salt is a random hexadecimal number appended to the domain before hashing. It’s a
public data that is part of the NSEC3PARAM record. It must be changed once in a while or
on regular intervals.

To generate the salt, you can use either of these:

 date | sha1sum | cut –b 1-16

 head –c 1000 /dev/random | sha1sum | cut –b 1-16

Example:

dnssec-signzone –A -3 $(head –c 1000 /dev/random | sha1sum | cut –b \
1-16) –o myzone.net –N INCREMENT –f <output-file> -t -k \
Kmyzone.net.+005+12345 db.myzone.net Kmyzone.net.+005+67890

To use NSEC3 without a salt, simply use a single dash.

D. Publishing the zone.

1. Reconfigure to load the signed zone. Edit named.conf and point to the signed zone. For
example:

zone “<myzone>” {

 type master;

 # file “db.myzone.net”;

 file “db.myzone.net.signed”;

};

Change the file to point to the signed zone.

Lab 10.1 – Implementing DNSSEC

Lab Exercise 10.1 – Implementing DNSSEC Created: 27 Aug 2014
Version 3.0 Updated: 29 Aug 2014

Page 5 of 5

2. Push the DS record up to your parent domain. Another output of the dnssec-signzone
command is the file dsset-<yourdomain> (ex: dsset-myzone.net) which contains the DS
records.

The contents of the file look something like this:
myzone.net. IN DS 4297 5 1 C5A8C518B2208463F87CB30E35F247DD7EACCDB1
myzone.net. IN DS 4297 5 2 27E89E4A769F6C6BC889BB6F2E98374CA835D2B8C750D5505F32144E 1E79B881

where:
 Keytag = 4297
 Algorithm = 5
 Digest type = 1 (for the first line), 2 (for the second line)
 Digest = C5A8C518B2208463F87CB30E35F247DD7EACCDB1

You must contact the parent zone to communicate these values to them. This can be done
by sending this file, or filling up an online form provided by your parent zone (or domain
registrar). In the class, send/copy the file using SCP.

The parent zone will then include the DS record in their zonefile. The $INCLUDE statement
can be used at this stage.

$INCLUDE “dsset-myzone.net.”

You may check if it has been successfully added using dig.

dig @nameserver +noadditional DS myzone.net | grep DS

3. For slave servers, the configuration is simple.

In the configuration file, add in the options section:

dnssec-enable yes;

dnssec-validation auto | yes;

Then edit the zone section to point to the new signed zonefile. After reload, verify that this
file exists in the folder specified in the config.

zone “<myzone>” {

 type slave;

 masters { X.X.X.X; };

file “db.myzone.net”;

 file “db.myzone.net.signed”;

};

4. Check if DNSSEC is working using the dig command.

dig @localhost +dnssec +multiline myzone.net

