
Cloud	Computing	&	Linux	
Shell	Programming

Muhammad	Moinur	Rahman	(1Asia)	
Sumon	Ahmed	Sabir	(Fiber@Home)	
Yoshinobu	Matsuzaki	(IIJ)	
GZ	Kabir	(BDCOM)	
Suman	Kumar	Saha	(Amber	 IT)

1

What’s Shell?

It’s acts an interface between the user and OS (kernel).It’s
known as “ command interpreter”.

When you type ls :

shell finds cmd (/usr/bin).

shell runs cmd.

you receive the output.

2AMBER IT

Unix	Shell

• The	Bourne	shell	/bin/sh	(written	by	S.	R.	Bourne).	
• Along	came	the	people	from	UCB	and	the	C-shell	/bin/csh	was	born.	Into	
this	shell	they	put	several	concepts	which	were	new,	(the	majority	of	
these	being	job	control	and	aliasing)	and	managed	to	produce	a	shell	
that	was	much	better	for	interactive	use.	
• Eventually	David	Korn	from	AT&T	had	the	bright	idea	to	sort	out	this	
mess	and	the	Korn	shell	/bin/ksh	made	its	appearance.	The	Korn	shell	
became	part	of	System	V	but	had	one	major	problem;	unlike	the	rest	of	
the	UNIX	shells	it	wasn't	free,	you	had	to	pay	AT&T	for	it.

3AMBER IT

Unix	Shell

• Also	at	about	this	time	the	GNU	project	was	underway	and	they	decided	
that	they	needed	a	free	shell,	they	also	decided	that	they	wanted	to	
make	this	new	shell	POSIX	compatible,	thus	bash	(the	Bourne	again	
shell)	was	born.	
• Like	the	Korn	shell	bash	was	based	upon	the	Bourne	shells	language	and	
like	the	Korn	shell,	it	also	pinched	features	from	the	C	shell	and	other	
operating	systems.	
• The	Bourne	Shell
• The	Bourne	shell	is	the	original	UNIX	shell	program.	It	is	very	widely	
used.	You	can	start	the	Bourne	shell—if	it	hasn't	been	set	as	your	default	
startup	shell—by	typing	"sh"	or	"/bin/sh"	at	the	command	prompt.	This	
will	not	spawn	a	new	shell	window,	but	rather	will	just	change	your	
current	shell	to	the	Bourne	shell.

4AMBER IT

Unix	shell

• The	Bourne	shell	supports	conditional	branching	in	the	form	
of	if/then/else	statements.	In	addition,	the	Bourne	shell	
supports	case	statements	and	loops	(for,	while,	and	until).	
• The	Bourne	shell	uses	the	$	as	a	prompt.

5AMBER IT

Unix	Shell

• The	Korn shell
• The	Korn shell	is	a	much	newer	variation	of	the	Bourne	shell.	It	supports	
everything	the	Bourne	shell	does,	and	adds	features	not	available	in	the	
Bourne	shell.	The	Korn shell	is	not	a	standard	offering	in	UNIX	
installations.	If	you	have	the	Korn shell,	you	can	run	it	by	typing	ksh or	
/bin/ksh at	the	shell	prompt.	A	public-domain	version	of	the	Korn shell,	
called	pdksh.	
• The	Korn shell	was	originally	written	by	David	Korn and	is	copyrighted	by	
AT&T.	
• The	programming	structure	of	the	Korn shell	is	very	similar	to	that	of	the	
Bourne	shell.	The	Korn shell,	however,	is	more	interactive.	

6AMBER IT

Unix	Shell

• The	C	shell
• The	C	shell	is	a	very	commonly	used	shell.	Its	programming	structure	
closely	resembles	that	of	the	programming	language	"C."	
• The	C	shell	uses	the	"%"	as	a	prompt.
• The	C	shell	supports	all	of	the	features	that	the	Bourne	shell	supports,	
and	has	a	more	natural	syntax	for	programming.	
• The	C	shell	is	more	interactive	than	the	Bourne	shell,	with	additional	
features	that	aren't	available	in	older	shells.	
• The	configuration	of	the	C	shell	is	controlled	by	the	.rc and	the	.login	
files.

7AMBER IT

Unix	Shell

• The	tc shell
• The	tc shell	is	a	more	modern	variation	of	the	C	shell.	
• It	reads	the	same	configuration	files	that	the	C	shell	uses.	
• Tcsh contains	command	line	editing	keystrokes	that	the	C	shell	is	missing,	
and	has	more	"modern"	conveniences	that	the	C	shell	lacks.	

8AMBER IT

Unix	Shell

• The	Bourne-Again	shell
• The	Bourne-Again	shell	is a	variation	of	the	Bourne	shell.
• It	is	commonly	used	in	Linux,	but	is	widely	available	in	other	standard	
UNIX	distributions.	
• The	Bourne	Again	shell	is	another	modification	of	the	Bourne	shell,	and	
uses	the	$	as	a	prompt.	
• To	start	the	Bourne	Again	shell,	type	"bash"	at	the	shell	prompt.	

9AMBER IT

Basic	Shell	Programming

• A	script	is	a	file	that	contains	shell	commands
• data	structure:	variables
• control	structure:	sequence,	decision,	 loop

• Shebang	line	for	bash	shell	script:
#! /bin/bash
#! /bin/sh
• to	run:
• make	executable:		% chmod +x script
• invoke	via:	 % ./script

10AMBER IT

Bash	shell	programming

¢ Input
� prompting	 user
� command	line	arguments

¢Decision:
� if-then-else
� case

¢Repetition
� do-while,	 repeat-until
� for
� select

¢ Functions
¢ Traps	

11AMBER IT

User	input

• shell	allows	to	prompt	for	user	input
Syntax:

read varname [more vars]

• or

read –p "prompt" varname [more vars]

• words	entered	by	user	are	assigned	to	
varname and	“more vars”
• last	variable	gets	rest	of	input	line

12AMBER IT

User	input	example

#! /bin/sh
read -p "enter your name: " first last

echo "First name: $first"
echo "Last name: $last"

13AMBER IT

Special	shell	variables

14

Parameter Meaning
$0 Name of the current shell script

$1-$9 Positional parameters 1 through 9

$# The number of positional parameters

$* All positional parameters, “$*” is one string

$@ All positional parameters, “$@” is a set of strings

$? Return status of most recently executed command

$$ Process id of current process

AMBER IT

Examples:	Command	Line	Arguments

% set tim bill ann fred
$1 $2 $3 $4

% echo $*
tim bill ann fred
% echo $#
4
% echo $1
tim
% echo $3 $4
ann fred

15

The ‘set’
command can

be used to
assign values to

positional
parameters

AMBER IT

bash	control	structures

• if-then-else
• case
• loops
• for
• while
• until
• select

16AMBER IT

if	statement

if command
then
statements
fi

• statements	are	executed	only	if	command succeeds,	i.e.	has	return	
status	“0”

17AMBER IT

The	simple	if	statement

if [condition]; then
statements
fi

• executes	the	statements	only	if	condition is	true

18AMBER IT

The	if-then-else	statement

if [condition]; then
statements-1

else
statements-2

fi

• executes	statements-1	if	condition	is	true
• executes	statements-2	if	condition	is	false

19AMBER IT

The	if…statement

if [condition]; then
statements

elif [condition]; then
statement

else
statements

fi

• The	word	elif stands	for	“else	if”		
• It	is	part	of	the	if	statement	and	cannot	be	used	by	itself

20AMBER IT

Relational	Operators

21

Meaning Numeric String
Greater than -gt

Greater than or equal -ge

Less than -lt

Less than or equal -le

Equal -eg = or ==

Not equal -ne !=

str1 is less than str2 str1 < str2

str1 is greater str2 str1 > str2

String length is greater than zero -n str

String length is zero -z str

AMBER IT

Compound	logical	expressions

! not

&& and
|| or

22

and, or
must be enclosed within

[[]]

AMBER IT

Example:	Using	the	!	Operator

#!/bin/bash

read -p "Enter years of work: " Years
if [! "$Years" -lt 20]; then

echo "You can retire now."
else

echo "You need 20+ years to retire"
fi

23AMBER IT

Example:	Using	the	&&	Operator	

#!/bin/bash

Bonus=500
read -p "Enter Status: " Status
read -p "Enter Shift: " Shift
if [["$Status" = "H" && "$Shift" = 3]]
then

echo "shift $Shift gets \$$Bonus bonus"
else

echo "only hourly workers in"
echo "shift 3 get a bonus"

fi

24AMBER IT

Example:	Using	the	||	Operator

#!/bin/bash

read -p "Enter calls handled:" CHandle
read -p "Enter calls closed: " CClose
if [["$CHandle" -gt 150 || "$CClose" -gt 50]]

then
echo "You are entitled to a bonus"

else
echo "You get a bonus if the calls"
echo "handled exceeds 150 or"
echo "calls closed exceeds 50"

fi

25AMBER IT

File	Testing

Meaning
-d	file True	if	‘file’	is	a	directory
-f	file True	if	‘file’	is	an	file
-r	file True	if	‘file’	is	readable
-w	file True	if	‘file’	is	writable
-x	file True	if	‘file’	is	executable
-s	file True	if	length	of	‘file’	is	nonzero

26AMBER IT

Example:	File	Testing

#!/bin/bash
echo "Enter a filename: "
read filename
if [! –r "$filename"]
then
echo "File is not read-able"

exit 1
fi

27AMBER IT

Example:	File	Testing

#! /bin/bash

if [$# -lt 1]; then

echo "Usage: filetest filename"
exit 1

fi
if [[! -f "$1" || ! -r "$1" || ! -w "$1"]]

then

echo "File $1 is not accessible"
exit 1

fi

28AMBER IT

Example:	if…	Statement

The following THREE if-conditions produce the same result

* DOUBLE SQUARE BRACKETS
read -p "Do you want to continue?" reply
if [[$reply = "y"]]; then

echo "You entered " $reply
fi

* SINGLE SQUARE BRACKETS
read -p "Do you want to continue?" reply
if [$reply = "y"]; then

echo "You entered " $reply
fi

* "TEST" COMMAND
read -p "Do you want to continue?" reply
if test $reply = "y"; then

echo "You entered " $reply
fi

29AMBER IT

Example:	if..elif...	Statement

#!/bin/bash

read -p "Enter Income Amount: " Income
read -p "Enter Expenses Amount: " Expense

let Net=$Income-$Expense

if ["$Net" -eq "0"]; then
echo "Income and Expenses are equal - breakeven."

elif ["$Net" -gt "0"]; then
echo "Profit of: " $Net

else
echo "Loss of: " $Net

fi

30AMBER IT

The	case	Statement

• use	the	case	statement	for	a	decision	that	is	based	on	multiple	
choices

Syntax:
case word in

pattern1) command-list1
;;
pattern2) command-list2
;;
patternN) command-listN
;;

esac

31AMBER IT

case	pattern

• checked	against	word	for	match
• may	also	contain:
*
?
[…]
[:class:]
• multiple	patterns	can	be	listed	via:
|

32AMBER IT

Example	1:	The	case	Statement

#!/bin/bash
echo "Enter Y to see all files including hidden files"
echo "Enter N to see all non-hidden files"
echo "Enter q to quit"

read -p "Enter your choice: " reply

case $reply in
Y|YES) echo "Displaying all (really…) files"

ls -a ;;
N|NO) echo "Display all non-hidden files..."

ls ;;
Q) exit 0 ;;

*) echo "Invalid choice!"; exit 1 ;;
esac

33AMBER IT

Example	2:	The	case	Statement

#!/bin/bash

ChildRate=3
AdultRate=10
SeniorRate=7

read -p "Enter your age: " age
case $age in
[1-9]|[1][0-2]) # child, if age 12 and younger

echo "your rate is" '$'"$ChildRate.00" ;;
adult, if age is between 13 and 59 inclusive
[1][3-9]|[2-5][0-9])

echo "your rate is" '$'"$AdultRate.00" ;;
[6-9][0-9]) # senior, if age is 60+

echo "your rate is" '$'"$SeniorRate.00" ;;
esac

34AMBER IT

Bash	programming:	so	far

• Data	structure
• Variables
• Numeric	variables
• Arrays

• User	input
• Control	structures
• if-then-else
• case

35AMBER IT

Bash	programming:	still	to	come

• Control	structures
• Repetition

• do-while,	repeat-until
• for
• select

• Functions
• Trapping	signals

36AMBER IT

Repetition	Constructs

37AMBER IT

The	while	Loop

• Purpose:
To	execute	commands	in	“command-list”	as	long	as	“expression”	
evaluates	to	true

Syntax:
while [expression]
do

command-list
done

38AMBER IT

Example:	Using	the	while	Loop

#!/bin/bash
COUNTER=0
while [$COUNTER -lt 10]
do

echo The counter is $COUNTER
let COUNTER=$COUNTER+1

done

39AMBER IT

Example:	Using	the	while	Loop

#!/bin/bash

Cont="Y"

while [$Cont = "Y"]; do
ps -A

read -p "want to continue? (Y/N)" reply
Cont=`echo $reply | tr [:lower:] [:upper:]`

done

echo "done"

40AMBER IT

Example:	Using	the	while	Loop

#!/bin/bash
copies files from home- into the webserver- directory
A new directory is created every hour

PICSDIR=/home/carol/pics
WEBDIR=/var/www/carol/webcam
while true; do

DATE=`date +%Y%m%d`
HOUR=`date +%H`
mkdir $WEBDIR/"$DATE"
while [$HOUR -ne "00"]; do

DESTDIR=$WEBDIR/"$DATE"/"$HOUR"
mkdir "$DESTDIR"
mv $PICSDIR/*.jpg "$DESTDIR"/
sleep 3600
HOUR=`date +%H`

done
done

41AMBER IT

The	until	Loop

• Purpose:
To	execute	commands	in	“command-list”	as	long	as	“expression”	
evaluates	to	false

Syntax:
until [expression]
do

command-list
done

42AMBER IT

Example:	Using	the	until	Loop

#!/bin/bash

COUNTER=20
until [$COUNTER -lt 10]
do

echo $COUNTER
let COUNTER-=1

done

43AMBER IT

Example:	Using	the	until	Loop

#!/bin/bash

Stop="N"

until [$Stop = "Y"]; do
ps -A

read -p "want to stop? (Y/N)" reply
Stop=`echo $reply | tr [:lower:] [:upper:]`

done

echo "done"

44AMBER IT

The	for	Loop

• Purpose:	
To	execute	commands	as	many	times	as	the	number	of	words	in	the	
“argument-list”

Syntax:
for variable in argument-list
do

commands
done

45AMBER IT

Example	1:	The	for	Loop

#!/bin/bash

for i in 7 9 2 3 4 5
do

echo $i
done

46AMBER IT

Example	2:	Using	the	for	Loop

#!/bin/bash
compute the average weekly temperature

for num in 1 2 3 4 5 6 7
do

read -p "Enter temp for day $num: " Temp
let TempTotal=$TempTotal+$Temp

done

let AvgTemp=$TempTotal/7
echo "Average temperature: " $AvgTemp

47AMBER IT

looping	over	arguments

• simplest	form	will	iterate	over	all	command	line	arguments:

#! /bin/bash
for parm
do

echo $parm
done

48AMBER IT

Select	command

• Constructs	simple	menu	from	word	list
• Allows	user	to	enter	a	number	instead	of	a	word
• User	enters	sequence	number	corresponding	to	the	word

Syntax:
select WORD in LIST
do

RESPECTIVE-COMMANDS
done

• Loops	until	end	of	input,	i.e.	^d		(or	^c)

49AMBER IT

Select	example

#! /bin/bash
select var in alpha beta gamma
do

echo $var
done

• Prints:

50

1) alpha
2) beta
3) gamma
#? 2
beta
#? 4
#? 1
alpha

AMBER IT

Select	detail

• PS3	is	select	sub-prompt
• $REPLY	is	user	input	(the	number)

#! /bin/bash
PS3="select entry or ^D: "
select var in alpha beta
do

echo "$REPLY = $var"
done

51

Output:
select ...
1) alpha
2) beta
? 2
2 = beta
? 1
1 = alpha

AMBER IT

Select	example

#!/bin/bash
echo "script to make files private"
echo "Select file to protect:"

select FILENAME in *
do
echo "You picked $FILENAME ($REPLY)"
chmod go-rwx "$FILENAME"
echo "it is now private"

done

52AMBER IT

break	and	continue

• Interrupt	for,	while	or	until	loop
• The	break	statement	
• transfer	control	to	the	statement	AFTER	the	done	statement
• terminate	execution	of	the	loop

• The	continue	statement
• transfer	control	to	the	statement	TO	the	done	statement
• skip	the	test	statements	for	the	current	iteration
• continues	execution	of	the	loop

53AMBER IT

The	break	command

while [condition]
do

cmd-1
break
cmd-n

done
echo "done"

54

This iteration is over
and there are no more

iterations

AMBER IT

The	continue	command

while [condition]
do

cmd-1
continue
cmd-n

done
echo "done"

55

This iteration is
over; do the next

iteration

AMBER IT

Example:

for index in 1 2 3 4 5 6 7 8 9 10
do

if [$index –le 3]; then
echo "continue"
continue

fi
echo $index
if [$index –ge 8]; then

echo "break"
break

fi
done

56AMBER IT

DONE !

Bash	shell	programming

• Sequence
• Decision:
• if-then-else
• case

• Repetition
• do-while,	 repeat-until
• for
• select

• Functions
• Traps	

57

still to come

AMBER IT

Shell	Functions

• A	shell	function	is	similar	to	a	shell	script
• stores	a	series	of	commands	for	execution	later
• shell	stores	functions	 in	memory
• shell	executes	a	shell	function	 in	the	same	shell	that	called	it

• Where	to	define
• In	.profile
• In	your	script
• Or	on	the	command	line

• Remove	a	function
• Use	unset	built-in

58AMBER IT

Shell	Functions

• must	be	defined	before	they	can	be	referenced
• usually	placed	at	the	beginning	of	the	script

Syntax:

function-name () {
statements

}

59AMBER IT

Example:	function

#!/bin/bash

funky () {
This is a simple function
echo "This is a funky function."
echo "Now exiting funky function."

}

declaration must precede call:

funky

60AMBER IT

Example:	function

#!/bin/bash
fun () { # A somewhat more complex function.

JUST_A_SECOND=1
let i=0
REPEATS=30
echo "And now the fun really begins."
while [$i -lt $REPEATS]
do

echo "-------FUNCTIONS are fun-------->"
sleep $JUST_A_SECOND
let i+=1

done
}
fun

61AMBER IT

Function	parameters

• Need	not	be	declared
• Arguments	provided	via	function	call	are	accessible	inside	function	as	
$1,	$2,	$3,	…

$#	 reflects	number	of	parameters
$0	 still	contains	name	of	script	

(not	name	of	function)

62AMBER IT

Example:	function	with	parameter

#! /bin/sh
testfile() {

if [$# -gt 0]; then
if [[-f $1 && -r $1]]; then

echo $1 is a readable file
else

echo $1 is not a readable file
fi

fi
}

testfile .
testfile funtest

63AMBER IT

Example:	function	with	parameters

#! /bin/bash
checkfile() {

for file
do

if [-f "$file"]; then
echo "$file is a file"

else
if [-d "$file"]; then

echo "$file is a directory"
fi

fi
done

}
checkfile . funtest

64AMBER IT

Local	Variables	in	Functions

• Variables	defined	within	functions	are	global,
i.e.	their	values	are	known	throughout	the	entire	shell	program

• keyword	“local”	inside	a	function	definition	makes	referenced	
variables	“local”	to	that	function

65AMBER IT

Example:	function

#! /bin/bash

global="pretty good variable"

foo () {
local inside="not so good variable"
echo $global
echo $inside
global="better variable"

}

echo $global
foo
echo $global
echo $inside

66AMBER IT

Handling	signals

• Unix	allows	you	to	send	a	signal	to	any	process

• -1	=	hangup kill -HUP 1234
• -2	=	interrupt	with	^C kill -2 1235
• no	argument	=	terminate kill 1235
• -9	=	kill kill -9 1236
• -9	cannot	be	blocked

• list	your	processes	with
ps -u userid

67AMBER IT

Signals	on	Linux

% kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4
39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12
47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

• ^C	is	2	- SIGINT

68AMBER IT

Handling	signals

• Default	action	for	most	signals	is	to	end	process
• term:	signal	handler

• Bash	allows	to	install	custom	signal	handler
Syntax:

trap 'handler commands' signals

Example:
trap 'echo do not hangup' 1 2

69AMBER IT

Example:	trap	hangup

#! /bin/bash
kill -1 won’t kill this process
kill -2 will

trap 'echo dont hang up' 1

while true
do

echo "try to hang up"
sleep 1

done

70AMBER IT

Example:	trap	multiple	signals

#! /bin/sh
plain kill or kill -9 will kill this
trap 'echo 1' 1
trap 'echo 2' 2

while true; do
echo -n .
sleep 1

done

71AMBER IT

Example:	removing	temp	files

#! /bin/bash
trap 'cleanup; exit' 2

cleanup () {
/bin/rm -f /tmp/tempfile.$$.?

}

for i in 1 2 3 4 5 6 7 8
do

echo "$i.iteration"
touch /tmp/tempfile.$$.$i
sleep 1

done
cleanup

72AMBER IT

Restoring	default	handlers

• trap without	a	command	list	will	remove	a	signal	handler
• Use	this	to	run	a	signal	handler	once	only

#! /bin/sh
trap 'justonce' 2
justonce() {
echo "not yet"
trap 2 # now reset it
}

while true; do
echo -n "."
sleep 1

done

73AMBER IT

Debug	Shell	Programs

• Debugging	is	troubleshooting	errors	that	may	occur	during	the	
execution	of	a	program/script
• The	following	two	commands	can	help	you	debug	a	bash	shell	script:
• echo
use	explicit	output	 statements	to	trace	execution

• set

74AMBER IT

Debugging	using	“set”

• The	“set”	command	is	a	shell	built-in	command
• has	options	to	allow	flow	of	execution

–v	option	prints	each	line	as	it	is	read
–x	option	displays	the	command	and	its	arguments
–n	checks	for	syntax	errors

• options	can	turned	on	or	off
• To	turn	on	the	option:	 			set	-xv
• To	turn	off	 the	options:	 	set	+xv

• Options	can	also	be	set	via	she-bang	line
#! /bin/bash -xv

75AMBER IT

DONE !

Summary:	Bash	shell	programming

• Sequence
• Decision:
• if-then-else
• case

• Repetition
• do-while,	 repeat-until
• for
• select

• Functions
• Traps	

76AMBER IT

